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Convergence Properties of the Symmetric and 
Unsymmetric Successive Overrelaxation 

Methods and Related Methods 

By David M. Young* 

Abstract. The paper is concerned with variants of the successive overrelaxation method 
(SOR method) for solving the linear system Au = b. Necessary and sufficient conditions are 
given for the convergence of the symmetric and unsymmetric SOR methods when A is 
symmetric. The modified SOR, symmetric SOR, and unsymmetric SOR methods are also 
considered for systems of the form Diu, - CuU2 = bi, - CLU1 + D2u2 = b2 where DI 
and D2 are square diagonal matrices. Different values of the relaxation factor are used on 
each set of equations. It is shown that if the matrix corresponding to the Jacobi method 
of iteration has real eigenvalues and has spectral radius ji < 1, then the spectral radius of 
the matrix G associated with any of the methods is not less than that of the ordinary SOR 
method with w = 2(1 + (1 - TA2)112)-l. Moreover, if the eigenvalues of G are real then no 
improvement is possible by the use of semi-iterative methods. 

Introduction. In this paper we study convergence properties of several iterative 
methods for solving the linear system 

(1.1) Au- b, 

where A is a given real nonsingular N X N matrix with nonvanishing diagonal 
elements, b is a given column vector, and u is a column vector to be determined. 
Each method can be characterized by an equation 

(1.2) (nl) =_u () + k, n = O, 1, 2, *.. 

where S is the matrix associated with the particular iterative method and k a constant 
column vector. It is easy to show that if all of the eigenvalues of ? are less than one 
in modulus and if k = (I - 9)A-'b, then for any u?) the sequence u?, U2 ... 
converges to the solution of (1.1). 

The successive overrelaxation method (SOR method), [15], is defined by the matrix 

(1.3) 2 = (I - wL)-Y(w U + (1 - )I), 

where L and U are strictly lower and strictly upper triangular matrices, respectively, 
such that 

(1.4) L + U = B = I- DIY A 
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and D = diag A is the diagonal matrix with the same diagonal elements as A. Here co 
is a real number known as a "relaxation factor" which is chosen in order that the 
convergence be as rapid as possible. Given Off), the components of u(n+l) can be 
obtained by the SOR method one at a time in order from Ut4+') to uf'. This cor- 
responds to a "forward sweep." One could also consider the use of a "backward 
sweep" where one determines in order the components from Ufn+,) to Ufn+,>. D'Sylva 
and Miles [2] considered the unsymmetric SOR method (USSOR method) where 
each iteration consists of a forward sweep with relaxation factor co followed by a 
backward sweep with relaxation factor a. The matrix associated with this iterative 
method is given by 

(1.5) =o . 4023, 

where 

(1.6) U&= (I - 3 U) '(cL + (1 - c)I). 

As a special case, we have the symmetric SOR method (SSOR method) of Sheldon [11], 
where co = e. The SSOR method is defined by 

(1.7) SW = -1W2W. 

Necessary and sufficient conditions for the convergence of the SOR, SSOR, 
and USSOR methods are given in Section 2. It is also shown that if A is positive 
definite then S(8W) = A 

We consider generalization of the SOR, SSOR, and USSOR methods which 
are defined when A has the form 

(1.8) A [ DI -Cu 

-CL D2, 

where D1 and D2 are square diagonal matrices. For the modified SOR method (MSOR 
method), [16], we use a relaxation factor co for the equations corresponding to D1 
(called "red equations") and we use a possibly different relaxation factor co' for 
the equations corresponding to D2 (called "black equations"). Thus, let us partition u 
in accordance with (1.8) obtaining 

(n+1) r(n) F2 

Letting F = -Jl'Cu and G = -J1'CL, we have from (1.4) 

(1.10) L + U = B = Fj 
G 

For the MSOR method we obtain from (1.10) and (1.3) with the relaxation factors 
w and co' the associated matrix 

* * In general, the spectral radius S(G) of a matrix G is the maximum of the moduli of its eigen- 
values. Given a nonsingular matrix P we define the P-norm of the matrix G by I IGj | p = I IPGP-I l 12. 
Here, for any real matrix G the spectral norm of G is defined by I IGI 2 = (S(GGT))112. 
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s@,x = [II 0 j (I co) I, XF 

-co'G I2) 0 U -CO')12J 

(1.11) - Lo'(1 -co)G F coF 

~co'(l - co)G coco'GF + (I - co')I2j 

where I, and I2 are identity submatrices. 
The MSOR method with co and co' fixed was first considered by DeVogelaere [1]. 

McDowell [9] considered more general variations of the relaxation factors and did 
not assume that A had the form (1.8). Young, et al., [16], considered the MSOR 
method with co and co' varying with n. 

In Section 3 we give necessary and sufficient conditions for the convergence 
of the MSOR method, and we seek values of co and co' to minimize S(2,, &,) or 
certain norms of S. i,, under certain restrictions on co and co'. 

As a natural generalization of the USSOR method one can consider the use 
of the relaxation factors co and co' on the forward sweep for the red and black equa- 
tions, respectively, and then Co' and co on the backward sweep for the black and 
red equations, respectively. Thus, we have the unsymmetric modified SOR method 
(USMSOR method) 

(1.12) =W c c @ o , o c 

where 

Al _ [I, -c7Ff- (I -63)Ij 0 ] 
o0 I2 C'G (1 - CO)2~ 

(1.13) =p(I - C)Ih + C6'FG 6(l - )F 

VoG (1 - C'W2, 

As a special case we have the symmetric MSOR method*** (SMSOR method) 
defined by 

(1 .14) 8W,W, =, - ua, W, Ice , W... 

In Section 4 it is shown that if A has the form (1.8), then the eigenvalues of each 
method considered can be expressed in terms of the eigenvalues of the modified 
SOR method for suitably defined relaxation factors. This generalizes the results of 
Wachspress [14] and D'Sylva and Miles [2] for the symmetric SOR method, and 
the results of Lynn [8] for the unsymmetric SOR method. It turns out that none 
of these methods can have a smaller spectral radius than the SOR method with 
the "optimum" relaxation factor [15] 

2 (1.15) ~~COb =1+ (1 - 2)1/2 p=S(B). 

*** One could also consider the method defined by S,, = , However, this method 
can be shown to have the same eigenvalues as 3 
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In Section 5 we consider the possibility of accelerating the convergence of the 
methods by the use of semi-iteration [13]. It is shown that if A is positive definite 
and has the form (1.8) and if all of the eigenvalues of ? , are real, then the best 
semi-iteration method based on ? ,, is no better, as far as the spectral radius is 
concerned, than the best semi-iterative method based on the Gauss-Seidel method 
(whose matrix is ,, 1 ?_ ,). This latter semi-iterative method is referred to as the 
"GS-SI method." It follows that no semi-iterative method based on the USMSOR 
method can be more effective than the GS-SI method. We remark that the SOR 
method with the optimum relaxation factor co, has approximately the same rate of 
convergence as the GS-SI method. 

In cases where A does not have the form (1.8), on the other hand, one can often 
choose co so that even though S(S,,) is considerably larger than S(? b), nevertheless, 
by the use of semi-iteration, one can obtain a significant improvement over the 
SOR method with co = Cob (see Sheldon [11], Ehrlich [3], Evans and Forrington [4], 
and Habetler and Wachspress [6]). 

For the case where A does have the form (1.8), a comparison of the SOR method 
with c = cob and other methods is given in [17]. While the SOR method with W = Wb 

is best as far as the spectral radius is concerned, as shown in [16], nevertheless, in 
terms of certain matrix norms the cyclic Chebyshev semi-iterative method introduced 
by Golub and Varga [5] and a modification of the GS-SI method proposed by Sheldon 
(11] are somewhat better. 

2. The SOR, SSOR, and USSOR Methods. Let us first prove the following 
relation between the A"12-norms of the SSOR and SOR methods and the spectral 
radius of the SSOR method. We do not assume that A necessarily has the form (1.8). 

THEOREM 2.1. Let A be a real symmetric matrix with positive diagonal elements. 
For any real w the eigenvalues of 8,, are real and nonnegative. If 0 < C < 2 and if 
A is positive definite, then 

(2.1) I18-I IAI/ = S(8M) = AI?II1/2 < 1. 

Conversely, if S(S,,) < 1, then 0 < X < 2 and A is positive definite. 
Proof. Since 8 w = ctL ,? ,I it is easy to show, as in [17], that it is sufficient to con- 

sider the case where A = I - L - U where U = LT. 
Evidently, by (1.7), (1.3), and (1.16), the matrix Sj is similar to 

= [(cL + (1 -,)I)(I-OL)['][(COL + (1 - o)I)(1 - L)- ]T, 

which is nonnegative definite. It follows that the eigenvalues of S* and hence, those 
of 8,. are real and nonnegative. 

Suppose now that A is positive definite and 0 < co < 2 and let A' = A4123A4-12 for 
any matrix S. Following Wachspress [14] we have by (1.3) 

JC = I - coA1/2(I - coL)' A 12 

and 

(2.2) ?@(A@)( = I - co(2 - co)[A2(I - coL) ][A'12(I - CL-l]T 

Since I ?o (co')T is positive definite for 0 < co < 2, it follows that all eigenvalues 
of C '(.S )T are less than unity and hence, 
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1 I-C. I IA11 I9 = 1 12@112 < 1. 
Evidently, 8,, is similar to 

8'= qL'4'. 

But tL = I - )A'I'(I- coU)-'A=12 (cj)T; hence, 

1I1I 1 12,/. = = SSiU q) = S((.,) =TS(=) = 

Moreover, 8 = (. )T4 T which is symmetric. Hence, S(S ') = 118'112 = I18(XIIA-/' 
and (2.1) follows. 

By (1.7), (1.3), and (1.6) we have 

det 8, = (1 - )2N 

Hence, if S(8,) < 1 then 0 < co < 2. Moreover, 8,, = I - co(2- coXI- coU)- 
(I - coL)-1A and 8,, is similar to *3*, where 

W** = I - co(2 - co)(I- coL)A(I - co U)-1. 

If A is not positive definite, then there exists a vector v 0 0 and a < 0 such that 
Av = aV. If w = (I - cU)v, then 

(W, _**W) (v, v) 

(w,w) 1 co( (w2 ) > I 

since 0 < co < 2. But since S** is symmetric, we have 

S(8**)- =Max (w, 8**w) > 1, 
Wo (w, w) 

and we have a contradiction. Therefore, A must be positive definite, and the proof 
of Theorem 2.1 is complete. 

For the USSOR method we have 
THEOREM 2.2. Let A be a real symmetric matrix with positive diagonal elements. 

If 0 < w < 2, 0 < co < 2, and if A is positive definite, then 

(2.3) S(OW, ) < 1. 

On the other hand, if (2.3) holds, then 

(2.4) 0 < + wCo < 2. 

Proof. By (1.5) we have 

II1 ,, c5IIA1/2 = II|1| l< C(AIIA1/2 I |1 |a I IA /2 I-2C I IA1/s. 

If 0 < co < 2, 0 < co < 2, and if A is positive definite, we have II ,eIIAI/ < 1 by 
(2.1), and, similarly, I IC1 I I 2 < 1. Therefore, (2.3) holds. 

Since det X3 = (1 - c,)N(1 - Co)N and, since the product of the eigenvalues 
of 5e,& is det X it follows that S(31,,,) (1 - co)(1 - Co)j. If (2.3) holds, then 
(2.4) holds. 

It would be interesting to develop necessary conditions on the matrix A in order 
that (2.3) holds either assuming that (2.4) holds or, perhaps, that 0 < co < 2, 
o < co < 2. It would also be interesting to show whether convergence would imply 
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that A is positive definite if (2.4) holds. As we shall see in Section 4, these propositions 
hold if A has the form (1.8). 

Using the A112-norm we can give an alternative proof of a theorem of Ostrowski 
[10] concerning the convergence of the SOR method with variable co. A slightly 
weaker result was obtained by Wachspress [14] using the A"2-norm. 

THEOREM 2.3. Let A be a positive definite matrix. The SOR method using W,, 
C02 ... converges provided either of the following conditions holds: 

(a) for some e > 0 we have 

e - Cok < 2 - e 

for all k sufficiently large: 
(b) 0 ? COk ?I 

2 for all k sufficiently large and the series 
co 

E -ik(2- (Ok) 

diverges. 
Proof. For convergence it is clearly sufficient to show that 

(2.5) Lim IIfJ .e =k0. 
mM--Co k-rn A"/' 

Let v(co) denote the smallest eigenvalue of the positive definite matrix 

P = ( A1/2(I - coL)1)(A 1/2(I 

Evidently, v(X) is a continuous function of w since the eigenvalues of a matrix are 
continuous functions of its elements. Thus, there exists a > 0 such that v(co) > a 
for all X in the range 0 ? co < 2. From (2.2) we have 

| A|C ,II2 , - S(4GCa,)T) < 1 - w(2 - w)a. 

The proof is completed by noting that if conditions (a) or (b) hold, then (2.5) holds. 
The proof given by Ostrowski [10] was based on the use of a certain quadratic 

form which is closely related to the A 12-norm. Thus, the proof given above and 
Ostrowski's proof are basically similar. 

3. The MSOR Method. From [17] we have 
THEOREM 3.1. Let A be a matrix with nonvanishing diagonal elements of the form 

(1.8). Then: 
(a) If gA is a nonzero eigenvalue of B and if X satisfies 

(3.1) (X + c- 1)(X + co' - 1) COOA 2 

then X is an eigenvalue of .C , A If IA = 0 is an eigenvalue of B, then X = 1 - co and/or 
X = 1 - W' is an eigenvalue of C W, ,I. 

(b) If X is an eigenvalue of .C ,,, then there exists an eigenvalue gA of B such that 
(3.1) holds. 

For any A let p(co, co', gA) be the root radius of the quadratic equation (3.1), i.e., 
the maximum of the moduli of the solutions X of (3.1). Evidently, we have 

(3.2) S(Se,,,,@,)= Max1 Max p(co, co', A), 1-al\M (3.2) S(.~~~~~,0,1) = Max { }CES' 



CONVERGENCE PROPERTIES OF THE OVERRELAXATION METHODS 799 

where 

a = 1, if I = O E SB 

a =, if = O E SB and 1-o Sz...,, but either 

1 (E S- . . or else 1 - wI j-d, 

a = to', if $=O E SB and 1-c'E SC...,,, but either 

1 -o( S. .. or else I 1 - 1j-c. 

Here, for any matrix G we let SG denote the set of all eigenvalues of G. 
In most cases there are so many eigenvalues of B that it is not practical to consider 

them individually. Rather, we consider bounds on /u. We are thus led to define the 
virtual spectral radius of ?., ,, as 

S(?, , )-LUB p(co, co', Au), 

where ,u ranges over the smallest convex set containing all of the eigenvalues of B. 
We say that ?,,, is strongly convergent if S(c,,,) < 1. In the case where the 
eigenvalues of B are real, and where A has the form (1.8), it can be shown [15] that A 
is an eigenvalue of B if and only if - I is also an eigenvalue of B. Hence, we have 

= Max p(cw, w', jA), 

where 1- = S(B). 
THEOREM 3.2. Let A be a real matrix with nonvanishing diagonal elements of the 

form (1.8). If A is positive definite or, more generally, if the eigenvalues of B are real 
and if 17 = S(B) < 1, then the MSOR method is strongly convergent if 

(3.3) 0 < X < 2, 0 < c' < 2. 

Conversely, if the eigenvalues of B are real and if the MSOR method is strongly con- 
vergent, then p < 1 and (3.3) holds. Also, if A is symmetric and has positive diagonal 
elements and if the MSOR method is strongly convergent, then A is positive definite 
and (3.3) holds. 

Proof. We first state without proof the following lemma concerning the roots 
of a quadratic equation. (See, for instance, [18].) 

LEMMA 3.3. If b and c are real, then the root radius of the quadratic equation 

-2 bX + c = 0 

is less than unity if and only if 

(3.4) IC <1, <bI < I + c. 

It is shown in [15] that if A is positive definite and has the form (1.8), then the 
eigenvalues of B are real and , = S(B) < 1. Let us define 

(3.5) c-=(co- 1)(co'- 1), b-(zou-co-co' + 2-1 + c- w(1 _ A) 

Evidently, if (3.3) holds, then (3.4) holds and the MSOR method is strongly con- 
vergent. 

Suppose on the other hand that the MSOR method is strongly convergent and 
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the eigenvalues of B are real. Since Icj < 1 and IbI < 1 + c for all p in the range 

-p ? ,u < 4a, we have 1(w - 1)(co'- 1)1 < 1 and 

(3.6) (Coco(IA2 > 0, 

(2 - o)(2-X + , > 0. 

Letting 1, = 0, we get coco' > 0 and (2 - )(2 co') > 0. Thus, (3.3) must hold. 
Since wco' > 0. it follows that all eigenvalues , of B are less than unity in modulus. 

If A is symmetric and has positive diagonal elements, then B is similar to I - 

D-112AD-"12 and, hence, has real eigenvalues. If the MSOR method is strongly 
convergent, then p, < 1 and, hence, A is positive definite. Theorem 3.2 follows. 

The following result was essentially proved in [16]. 
THEOREM 3.4. If A is a real matrix with nonvanishing diagonal elements of the 

form (1.8) such that the eigenvalues of B are real and p = S(B) < 1, then 

(3.7) &20bt>) - S(OCwb,1b) = SCb) = Cob - 1, 

and we have 

(3.7') swW ,)0 > &(2cb~cb)' 

unless co = Co' = Cob. 

We now seek an upper bound for N(4Z a,, and also the values of co and a' which 
minimize S(j,, ,) subject to the conditions 0 ? C ? 1, 0 < co' ? 1. We prove 

THEOREM 3.5. Under the hypotheses of Theorem 3.3, if 0 ? C < 1, 0 < co' < 1 
then 

(3.8) S(GC,, ,,) = & 1,,, ,,,,) < 1 - 2W'(1 - ) 

and 

(3.9) ( = S(2C,.1) > S(1,1) = SG(?.1)-A 

unless co co'- 1. 
Proof. We first state without proof the following lemma. 
LEMMA 3.6. Let p and p' be the root radii of X2 - bX + c = 0 and X2 - byX + 

c = 0, where b, c, and b' are real. If Jbj > Jb'J, then p 2 p'. Moreover, if (b')2 - 
4c 2 0 and IbI > jb'J, then p > p'. 

Since b = 1 + c -_ CoC'(1 - 2) from (3.5), and since 0 < C < 1, 0 < Co < 1, 
c (C-1)('-1), the largest value of IbI in the range -p ? < j p, occurs, for 
fixed co and co', where p = p. Consequently, by Lemma 3.6 we have, since a is an 
eigenvalue of B, 

S(2,,WI) = p(C, WI', A) = 40,0,). 

We now seek a bound on p(Co, co', g). Letting 0 = 1 - X, we have from (3.5), 
with ,u = ,u that X2 - bX + c = 0 becomes 

(3.10) 02 -C(1 + Coo'(1-?)-c)O + Coo(1 _ U2) = 0. 

But the discriminant of (3.10) is 

(C _ -,)2 + 2pq2(2 - (C + Co')Co'), 

which is nonnegative since 0 ? co < 1, 0 ? co' < 1. Since 0 ? c < 1, the smallest 
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root of (3.10) is not less than 

4ctc2'(1 - ) 

Hence, (3.8) follows. 
Let c be any number in the range 0 < c < 1. It is easy to show that b = 1 + 

C- cow'(1 - 2) is minimized, subject to the conditions 0 < X ? 1, 0 c o 1, 
(co - 1)(co' - 1) = c when 

co = COO = 1 - 

Therefore, by Lemma 3.6 we have 

p(W,C ', P)Upi - /1 - ,). 

Moreover, p(l - CA, 1 - A, ,2) is the root radius of 

2 (1 + C -(1- Vc)2(1 - 2))X + C = 0, 

i.e., 
(X + c 1)2 C= z2X, 

where co, 1 - A. The root radius is 

=(@) [coZ + (W2.2 1- ))1/2]2 

which can be shown to be a decreasing function of co, for 0 < co, ? 1. Therefore, 
unless co- co' = 1 we have S(XC,,) > S(2 1,1). Since p(1 1 p2) ,u2 the result 
(3.9) follows. 

Let us assume that A is positive definite and has the form (1.8). We shall study 
the behavior of the D"12-norm and the A"12-norm of 2c i,, Actually, we shall consider 
the virtual D1/2-norm and the virtual A1/2-norm defined by 

| 42S,, O'I|ID1/in SO (O T)/ 

and 
| |So,&o, | A112 = (O(L (o )T)/ 

respectively, where c', = A1/2oS<, c,,A-1/2 

Concerning the virtual D"X2-norm we state the following result. 
If j > (1/3)1/2 .577, then IIwIID1/2 is minimized for 

4 / 4 
co=5 + _2, 3u - F 

and 

Min |,I, ,, ||D11/= - 2 
,0 a, 3 - il 

A proof of this result will be given in a later paper. 
Concerning the A"12-norm, we have the following 
THEOREM 3.7. If A is a positive definite matrix of the form (1.8), then 

(3.11) I 121,1 IA1/- I= 1 ,21,1|IAL/2 = , 
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and we have 

(3.12) I S @II1*> |1121.11 1 A IL/2 

unless X = w' = 1 or A = 0. Moreover, for any w and c' in the range 0 < co <a 2, 
0 < co' < 2 we have 

(3.13) 2|<eE,|A/ =1|l A/2 = S(2,, _ p2@ 1-y) < 1, 

where 

(3.14) co= -), co' - 

Proof. As shown in [15], we can assume that diag A = L From (1.11) and (1.13) 
we have 

?' .l = A1/2 , 1/2 

=A 
C co 

cA11 

A 1/2 I- [c l A]A]A1/2 = I_ Ao1/2] A 1/2 

L W G O tO'G co'I2- AGCt2 

and 

IL /2= I C- A O/ ['II wco'F]A1/2 

, CO 
' ( I2 

Since F = we have (c,?,,)T Al',,, and 

(3.15) A = S(CL,,&) 

We now prove 
LEMMA 3.8. If A is a matrix of the form (1.8) whose diagonal elements do not 

vanish, then the eigenvalues of SE , , 2 , ., are the same as those of ?,(, ,), (,, 4) 

where, in general, +(X1, Cw2) = Cw1 + Co2 - C01CO2. 

Proof. This is a generalization of a result proved by Wachspress [14, pp. 162-163]. 
By (1.11) and (1.13) we have 

flu ,42 C # = 4 ,o02, z2*20, c 0?e ,o 

which has the same eigenvalues as 

O0'ro.OW'o.COoOC.o = (W. ) -0 .W) 

and the lemma follows. 
Applying Lemma 3.8 and using (3.15), we obtain 

| |1X. 0 | AN = (S ) 

where c and c' are given by (3.14). Therefore, 

jjo|iSijj*i/A = S1l.) =S(GO1) = SWC1) = 

hence, (3.11) follows. Moreover, since 0 < co < 2 and 0 < co' < 2, if the MSOR 
method is strongly convergent, it follows that 0 < 6 < 1, 0 < t' < 1. By (3.8), 
the result (3.13) follows. The result (3.12) follows from Theorem 3.5, and the proof 
of Theorem 3.7 is complete. 

From Lemma 3.8 it follows that the eigenvalues of .<, are the same as those 
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of ?,(2w). w(2_w). Therefore, by Theorem 3.7 we have 

S~s) | ?@| A1/ = | CwtW| A1/2 = ?, |A1/ S(Pl.l) = S(80). 

The fact that S(S,,) > S(81) for positive definite matrices of the form (1.8) was proved 
by Kahan [7, Chapter 5]. 

Using (3.13) we can prove the following generalization of Theorem 2.2. 
THEOREM 3.9. Let A be a real positive definite matrix of the form (1.8). The MSOR 

method with co1, cot, cW2, CW., * converges provided either of the following conditions 
holds: 

(a) for some e > 0 we have 

E?-< Wk ? 2 e, e ? co < 2 - e, 

for all k sufficiently large, 
(b) 0 ? ck ? 2 and 0 ? ck ? 2 for all k sufficiently large and the series 

cokck(2 - 
C(2 

- co') keel /c-i 

diverges. 

4. The USMSOR Method. In this section we consider the USMSOR method 
and special cases thereof including the SMSOR, USSOR, and SSOR methods. 
From (1.12) and Theorem 3.7 it follows that 

||WW<,W,0,W,,A1/2|X, -< 1114,01'|A1/9 112,o'co||A1/12 

Hence, we have 
THEOREM 4.1. If A is a positive definite matrix of the form (1.8) and if 0 < co < 2, 

0 < co' < 2, 0 < Co < 2, 0 < co' < 2, then 

(4.1) S(WWW,0,r4,) < | WoY,co4, IIA1/9 < 1. 

From (1.12) and Lemma 3.8 we have 
THEOREM 4.2. Let A be a real symmetric matrix of the form (1.8) with positive 

diagonal elements. The eigenvalues of cWw,,w,,, , are the same as those of ?2,a, 
where 

(4 .2) d c.+ c.) - Wc, co, =C + o , ,o 

We now define the virtual spectral radius of W, , a, a,* by 

(4.3) S , ) = S= 0, rv), 

where cW and cW' are given by (4.2). 
THEOREM 4.3. Under the hypotheses of Theorem 4.2, if A is positive definite and if 

o < co < 2, 0 < ct < 2, where co and 6' are given by (4.2), then 

(4.4) S(WW,W1r, , a Z ) n (?,, ?aAl3 < 1 . 

Moreover, if w o 1, A' # 1, then 

(4.5) = 04(*)*(X ))= = SG)(2b) = Wb - 1, 

where {(co) is defined for co $ 1 by 
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(4.6) b= b - CO 
I - CO 

where COb is given by (1.15) and 46(1) = 1if COb = 1. If COb id 1, then 

(4.7) SW,, X)> Wob - 1, 

unless X 0 1, co' 0 1, Co' = QOW'), Co = {(co). If cob = 1, then (4.7) holds unless w 
or I = 1 and unless co' = I or a' = 1. Conversely, if (4.4) holds, then A is positive 
definite and O < cXO < 2, 0< ' < 2. 

Proof. By (4.3) and Theorem 3.4 we minimize 5(W , ,, 4 ;) by letting c = 
a = cob, i.e., by letting 

Co + Co - CoCo = Co' + ,' - (A)) = Wb. 

If (4.2) holds, then by (4.3) it follows that S(.%, ,) < 1. Since A is real and sym- 
metric and has positive diagonal elements, it follows from Theorem 3.2 that A is 
positive definite and 0 < cW < 2, 0 < co' < 2. 

From Theorem 4.3 it follows that no choice of con co', Co, Co' can yield a faster 
convergence, as far as the spectral radius is concerned, than the SOR method with 
CO = CWb. This result was proved for the USSOR method by D'Sylva and Miles [2]. 

From Theorem 4.2 it follows that for the SMSOR method, the eigenvalues 
of 8,, ., are the same as those of 

?d (2-w), w'(2- w') 
. 

Consequently, by Theorem 3.5 the optimum choice of co and co' is co = co' = 1. 
For the USSOR method, the eigenvalues of , ; are the same as those of ? ,+ _-. 

One can obtain a spectral radius of cob - 1 by letting co # 1, if cob 0 1, and letting 
CO = (cob - co)(1 - co)-. If CWb = 1 we can let co = 1 or X- 1. 

5. Semi-iterative Methods. In this section we consider semi-iterative methods 
based on the MSOR method and the methods considered in Section 4. We assume 
that the matrix A has the form (1.8). Since the eigenvalues of the methods of Section 4 
are related to those of ?,. , for suitable co and co', it is sufficient to study the eigen- 
values of ..,. 

Given a basic iterative method 

u (+l) = Cud") + kg 

where the eigenvalues of 9 are real and lie in an interval a ? X S A < 1, we can 
accelerate the convergence by using a semi-iterative method. The convergence of 
the semi-iterative method depends on the quantity 

2 - (i + a) 

where the smaller a the faster the convergence (see, for instance, Varga [13] or [17]). 
For the Gauss-Seidel method we have , 2 = a2, ( = 0 and hence, 
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THEOREM 5.1. Let A be a positive definite matrix of the form (1.8) and let P = S(B). 
If the solutions of (3.1) are real for all ,u in the interval - j _ p a< ix, then 

13a ~~~~2 2- (13 + a) = 2- A 

Hence, 13 and a are, respectively, the maximum and minimum of all roots of (3.1) 
when ,u assumes all values between - i and FA. Moreover, if A' = 1 and 1 < 
X, ? (1 -, )k or if co = 1 and 1 C o' < (1 -Ii2Y1 then 

2 

a(c, A)') = 1 )=2v-2 

We now sketch a proof of the theorem. Details of the proof can be found in [18]. 
Figure 5.1 shows the regions of the (co, co') plane where all roots of (3.1) are real 

for all ji in the interval -p < ?i _t ?u. Thus, all roots are real unless we have 

Cl) I 

J i t~~~~~J 

Complex Rots 

1l2 co__ 

1, I 1 

= 

~~+ 

I? 

// I I 2 
/' I I 

/ /' I I 

1 ' 1 > (a) 1- 
1_W 

FiouRE 5.1. Regions of Real and Complex Eigenvalues of ,. 
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1 1~~~~~~~~~~~~~ 
'o' 

> ' @> @'(( -l~l/2- 
+(1 _-y2)1/2j m coI> -2j co > co 2 

> < co < co, - 1) 1" -2 1~ -_ 1 - 

Theorem 5.1 is proved by considering the following cases. 
Case (a): w' = 1. 

I _ (1,2) __2 

' 1+-(1 -p) > 12 ,, if Xo< I, 

A + 1 > A , if X () < 

>o- if co 
1 

- co1 2 -7~ p 
2 ja 

Case (b): co' < <1. 

At 2) 1/2 - 

oaw( a = (1 _ 4(1- >2 
(2 - 2 22 

Case (c): a' ? X < 1. 

>2 2, where cZ = 1-((1-)(1 - c,))112 

Case (d): co : a' > 1. 

I C -[(C.- 1)1/2g + (I _..2)1/2]-2 p2 

'0 + c'' co + 1o[(2- 1)112p + (1 - -2 - 2 2 

Case (e): co' < 1, co > 1. 

a(C), CA)') > a , 1) _ A 2 

It follows from Theorems 4.2 and 5.1 that if A is positive definite and has the 
form (1.8) then we cannot achieve any faster convergence than that of the GS-SI 
method by using any semi-iterative method based on %' , ,. ; . Moreover, the 
GS-SI method does not converge faster than the SOR method with co = co,. The above 
statements are based on the use of the spectral radius as a measure of convergence. 
As discussed in Section 1, different conclusions may be appropriate if one uses 
certain matrix norms as a measure of convergence. 
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